ABSTRACT
Background
Methods
Results
Conclusions
Graphical abstract

Keywords
INTRODUCTION
METHODS
Study Population

Assessments of Cardiac Structure and Function at Baseline and Follow-up
Exercise Stress Echocardiography
Outcome Assessments
Statistical Analysis
RESULTS
Baseline Demographics
MRA (-) (n=56) | MRA (+) (n=37) | P value | |
---|---|---|---|
Age (years) | 74±8 | 75±9 | 0.71 |
Male, n (%) | 34 (50) | 13 (34) | 0.11 |
Body mass index (kg/m2) | 24.1±5.7 | 24.2±4.1 | 0.84 |
HFA-PEFF score | 6 (5, 7) | 6 (5, 8) | 0.39 |
Comorbidities | |||
Diabetes mellitus, n (%) | 18 (26) | 11 (29) | 0.78 |
Hypertension, n (%) | 51 (75) | 33 (87) | 0.14 |
Sinus Rhythm/ Paroxysmal AF/ Persistent AF, % | 71/12/18 | 66/16/18 | 0.83 |
Coronary artery disease, n (%) | 17 (25) | 4 (11) | 0.06 |
Medications | |||
ACEI or ARB, n (%) | 27 (40) | 15 (39) | 0.98 |
Beta-blocker, n (%) | 25 (37) | 13 (34) | 0.79 |
Loop Diuretic, n (%) | 24 (35) | 13 (34) | 0.91 |
SGLT2i, n (%) | 5 (7) | 3 (8) | 0.92 |
Vital Signs | |||
Heart rate (bpm) | 74±15 | 72±12 | 0.59 |
Systolic BP (mmHg) | 126±17 | 131±23 | 0.26 |
Saturation (%) | 97±2 | 97±2 | 0.44 |
Laboratories | |||
BNP (pg/mL) | 94 (45, 205) | 110 (32, 218) | 0.84 |
NT-proBNP (pg/mL) | 399 (190, 859) | 413 (153, 981) | 0.84 |
eGFR (mL/min/1.73m 2 ) | 54.3±16.4 | 63.3±19.1 | 0.01 |
Potassium (mEq/L) | 4.4±0.4 | 4.2±0.4 | 0.06 |
Assessments of congestion | |||
Peripheral edema (no/1+/2+), n (%) | 75/23/2 | 67/27/6 | 0.52 |
Pulmonary congestion on chest X-ray, n (%) | 0 (0) | 0 (0) | - |
Pleural effusion on chest X-ray, n (%) | 6 (9) | 2 (6) | 0.50 |
Echocardiographic measures at rest | |||
LV mass index (g/m2) | 88±21 | 89±23 | 0.90 |
LA volume index (mL/m2) | 34 (27, 45) | 39 (28, 56) | 0.34 |
LV end diastolic volume (mL) | 73±33 | 68±26 | 0.42 |
LV ejection fraction (%) | 65±8 | 63±7 | 0.30 |
E-wave (cm/sec) | 74±27 | 84±31 | 0.08 |
A-wave (cm/sec) | 87±23 | 90±24 | 0.48 |
Mitral e’ (cm/sec) | 5.8±1.7 | 5.9±1.6 | 0.59 |
E/e’ ratio | 13 (10, 17) | 14 (10, 17) | 0.47 |
TR velocity (cm/sec) | 2.2±0.4 | 2.3±0.4 | 0.87 |
PASP (mmHg) | 26±10 | 25±8 | 0.81 |
RAP (mmHg) | 3 (3, 3) | 3 (3, 3) | 0.49 |
TV s’ (cm/sec) | 11.8±3.0 | 11.3±2.9 | 0.38 |
Exercise tolerance and symptoms | |||
Peak watts (W) | 46±20 | 51±20 | 0.22 |
Exercise time (sec) | 454±186 | 479±183 | 0.51 |
Peak VO2 (mL/min/kg) | 10.6±3.3 | 10.7±3.3 | 0.88 |
Echocardiographic measures during exercise | |||
E/e’ ratio | 16 (12, 20) | 16 (13, 20) | 0.85 |
TR velocity (cm/sec) | 3.0±0.5 | 3.1±0.5 | 0.30 |
Invasive hemodynamics at rest# | |||
PCWP (mmHg) | 15±7 | 15±3 | 0.69 |
PA mean pressure (mmHg) | 21±8 | 21±3 | 0.94 |
RA pressure (mmHg) | 8±7 | 8±3 | 0.82 |
Cardiac output (L/min) | 5.1±1.9 | 4.5±0.8 | 0.25 |
Invasive hemodynamics during exercise# | |||
PCWP (mmHg) | 33±8 | 34±7 | 0.88 |
PA mean pressure (mmHg) | 40±6 | 46±10 | 0.08 |
RA pressure (mmHg) | 15±4 | 16±5 | 0.60 |
Cardiac output (L/min) | 6.7±1.6 | 7.1±1.5 | 0.53 |
Changes in NP Levels According to the MRA Status


Changes in Echocardiographic Measures
MRA (-) (n=49) | MRA (+) (n=28) | P value | |
---|---|---|---|
Age (years) | 73±7 | 73±9 | 0.82 |
Male, n (%) | 15 (31) | 10 (36) | 0.65 |
Body mass index (kg/m2) | 23.4±3.6 | 23.6±4.2 | 0.81 |
HFA-PEFF score | 6 (5, 7) | 7 (5, 8) | 0.02 |
Comorbidities | |||
Diabetes mellitus, n (%) | 8 (16) | 8 (29) | 0.21 |
Hypertension, n (%) | 38 (76) | 27 (96) | 0.02 |
Sinus Rhythm/ Paroxysmal AF/ Persistent AF, % | 82/10/8 | 79/7/14 | 0.66 |
Coronary artery disease, n (%) | 9 (18) | 1 (4) | 0.04 |
Medications | |||
ACEI or ARB, n (%) | 17 (35) | 12 (43) | 0.48 |
Beta-blocker, n (%) | 16 (33) | 8 (29) | 0.71 |
Loop Diuretic, n (%) | 14 (29) | 8 (29) | 1.00 |
SGLT-2i, n (%) | 0 (0) | 1 (4) | 0.15 |
Vital Signs | |||
Heart rate (bpm) | 75±13 | 71±11 | 0.14 |
Systolic BP (mmHg) | 125±19 | 133±24 | 0.09 |
Saturation (%) | 97±2 | 97±2 | 0.72 |
Laboratories | |||
BNP (pg/mL) | 69 (39, 192) | 135 (52, 226) | 0.35 |
NT-proBNP (pg/mL) | 289 (148, 1489) | 528 (211, 1002) | 0.69 |
eGFR (mL/min/1.73m 2 ) | 54.0±23.3 | 62.9±20.5 | 0.10 |
Potassium (mEq/L) | 4.3±0.4 | 4.3±0.4 | 0.76 |
Assessments of congestion | |||
Peripheral edema (no/1+/2+), n (%) | 71/26/3 | 65/31/4 | 0.88 |
Pulmonary congestion on chest X-ray, n (%) | 0 (0) | 0 (0) | - |
Pleural effusion on chest X-ray, n (%) | 3 (7) | 1 (4) | 0.61 |
Echocardiographic measures at rest | |||
LV mass index (g/m2) | 87±24 | 90±24 | 0.49 |
LA volume index (mL/m2) | 34 (25, 47) | 39 (30, 53) | 0.11 |
LV end diastolic volume (mL) | 66±24 | 67±20 | 0.99 |
LV ejection fraction (%) | 64±7 | 64±7 | 0.79 |
E-wave (cm/sec) | 77±27 | 86±33 | 0.20 |
A-wave (cm/sec) | 94±27 | 93±26 | 0.81 |
Mitral e’ (cm/sec) | 5.5±1.6 | 6.0±1.7 | 0.29 |
E/e’ ratio | 13 (10, 18) | 14 (10, 17) | 0.99 |
TR velocity (cm/sec) | 2.2±0.4 | 2.4±0.4 | 0.10 |
PASP (mmHg) | 24±9 | 26±8 | 0.34 |
RAP (mmHg) | 3 (3, 3) | 3 (3, 7) | 0.72 |
TV s’ (cm/sec) | 12.7±3.3 | 12.1±3.4 | 0.43 |
Exercise tolerance and symptoms | |||
Peak watts (W) | 42±18 | 52±22 | 0.03 |
Exercise time (sec) | 445±174 | 508±202 | 0.16 |
Peak VO2 (mL/min/kg) | 10.6±3.7 | 11.4±3.7 | 0.42 |
Echocardiographic measures during exercise | |||
E/e’ ratio | 17 (14, 21) | 17 (13, 20) | 0.55 |
TR velocity (cm/sec) | 2.9±0.5 | 3.3±0.5 | 0.003 |
Invasive hemodynamics at rest# | |||
PCWP (mmHg) | 17±8 | 17±5 | 0.92 |
PA mean pressure (mmHg) | 22±9 | 20±4 | 0.53 |
RA pressure (mmHg) | 9±7 | 9±4 | 0.98 |
Cardiac output (L/min) | 5.0±2.2 | 4.1±0.9 | 0.30 |
Invasive hemodynamics during exercise # | |||
PCWP (mmHg) | 35±6 | 37±13 | 0.76 |
PA mean pressure (mmHg) | 42±6 | 45±14 | 0.54 |
RA pressure (mmHg) | 16±5 | 18±8 | 0.64 |
Cardiac output (L/min) | 6.6±2.1 | 7.0±1.2 | 0.65 |

DISCUSSION
- Xiang Y
- Shi W
- Li Z
- et al.
- Pandey A
- Garg S
- Matulevicius SA
- et al.
- Xiang Y
- Shi W
- Li Z
- et al.
Author (Year) (Study name) | Design | Subjects | N (MRA group) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Age (years) | Female | BMI (kg/m2) | HTN | Diuretics | Prior HF Hospitalization | BNP NT-proBNP (pg/mL) | ||||
Present study | Observational Study | HFpEF without HF hospitalization | 197 (47) | 75 | 66% | 23.6 | 89% | 32% | 0% | BNP 115 NT-proBNP 429 |
Kosmala (2011) | RCT | Metabolic Syndrome | 79 (40) | 58 | 52% | 32.8 | 100% | 48% | Not reported | Not reported |
Mottram (2004) | RCT | Hypertension with LVDD | 29 (14) | 61 | 60% | 29.8 | 100% | 43% | Not reported | BNP 29.3 - |
Jun (2016) | Observational Study | Hypertension with LVH | 195 (65) | 67 | 54% | 25.3 | 100% | 11% | 0% | Not reported |
Cleland (2021) | RCT (HOMAGE) | CAD or high-risk of CAD with raised NP | 527 (265) | 73 | 23% | 28.4 | 81% | 17% | 0% | - NT-proBNP 172 |
Kosmala (2016) | RCT (STRUCTURE) | HFpEF | 131 (67) | 68 | 81% | 29.7 | 91% | 64% | 21%** | BNP 54 - |
Edelmann (2013) | RCT (Aldo-DHF) | HFpEF | 422 (213) | 67 | 52% | 28.9 | 92% | 55% | 38%** | - NT-proBNP 179 |
Kurrelmeyer (2014) | RCT | HFpEF | 48 (24) | 66 | 100% | 29.4 | 88% | 83% | 58%** | BNP 139 - |
Deswal (2011) | RCT* (PAAM-PEF) | HFpEF | 44 (21) | 72 | 5% | 30.1 | 100% | 95% | 43% | BNP 255 - |
Pitt (2014) | RCT (TOPCAT) | HFpEF | 3445 (1722) | 69 | 52% | 31 | 91% | 82% | 71.5%** | BNP 235 NT-proBNP 1017 |
Limitations
Conclusions
Acknowledgments
Supplementary Material
References
- Evaluation and management of heart failure with preserved ejection fraction.Nat Rev Cardiol. 2020; 17: 559-573https://doi.org/10.1038/s41569-020-0363-2
- Characterization of the Progression From Ambulatory to Hospitalized Heart Failure With Preserved Ejection Fraction.J Card Fail. 2020; 26: 919-928https://doi.org/10.1016/j.cardfail.2020.08.008
- Prior Heart Failure Hospitalization, Clinical Outcomes, and Response to Sacubitril/Valsartan Compared With Valsartan in HFpEF.J Am Coll Cardiol. 2020; 75: 245-254https://doi.org/10.1016/j.jacc.2019.11.003
- Prior Heart Failure Hospitalization and Outcomes in Patients with Heart Failure with Preserved and Reduced Ejection Fraction.Am J Med. 2019; 133: 84-94https://doi.org/10.1016/j.amjmed.2019.06.040
- Role of Diastolic Stress Testing in the Evaluation for Heart Failure with Preserved Ejection Fraction: A Simultaneous Invasive-Echocardiographic Study.Circulation. 2017; 135: 825-838https://doi.org/10.1161/CIRCULATIONAHA.116.024822
- Exercise hemodynamics enhance diagnosis of early heart failure with preserved ejection fraction.Circ Hear Fail. 2010; 3: 588-595https://doi.org/10.1161/CIRCHEARTFAILURE.109.930701
- The Clinical Use of Stress Echocardiography in Non-Ischaemic Heart Disease: Recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography.J Am Soc Echocardiogr. 2017; 30: 101-138https://doi.org/10.1016/j.echo.2016.10.016
- Multimodality imaging in patients with heart failure and preserved ejection fraction: an expert consensus document of the European Association of Cardiovascular Imaging.Eur Hear journal Cardiovasc Imaging. 2022; 23: e34-e61https://doi.org/10.1093/ehjci/jeab154
- How to diagnose heart failure with preserved ejection fraction: The HFA-PEFF diagnostic algorithm: A consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC).Eur Heart J. 2019; 40: 3297-3317https://doi.org/10.1093/eurheartj/ehz641
- Exercise Stress Echocardiography in the Diagnostic Evaluation of Heart Failure with Preserved Ejection Fraction.J Cardiovasc Dev Dis. 2022; 9: 87https://doi.org/10.3390/jcdd9030087
- 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines.Circulation. 2022; 145: e895-e1032https://doi.org/10.1161/CIR.0000000000001063
- Regional variation in patients and outcomes in the treatment of preserved cardiac function heart failure with an aldosterone antagonist (TOPCAT) trial.Circulation. 2015; 131: 34-42https://doi.org/10.1161/CIRCULATIONAHA.114.013255
- Angiotensin–Neprilysin Inhibition in Heart Failure with Preserved Ejection Fraction.N Engl J Med. 2019; 381: 1609-1620https://doi.org/10.1056/nejmoa1908655
- Empagliflozin in Heart Failure with a Preserved Ejection Fraction.N Engl J Med. 2021; 385: 1451-1461https://doi.org/10.1056/NEJMoa2107038
- Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction.N Engl J Med. 2022; 387: 1089-1098https://doi.org/10.1056/NEJMoa2206286
- Time to Clinical Benefit of Dapagliflozin and Significance of Prior Heart Failure Hospitalization in Patients With Heart Failure With Reduced Ejection Fraction.JAMA Cardiol. 2021; 6: 499-507https://doi.org/10.1001/jamacardio.2020.7585
Kjeldsen SE, von Lueder TG, Smiseth OA, et al. Medical Therapies for Heart Failure With Preserved Ejection Fraction. Hypertens (Dallas, Tex 1979). 2020;75(1):23-32. doi:10.1161/HYPERTENSIONAHA.119.14057
- Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial.JAMA. 2013; 309: 781-791https://doi.org/10.1001/jama.2013.905
- The effect of spironolactone on cardiovascular function and markers of fibrosis in people at increased risk of developing heart failure: the heart “OMics” in AGEing (HOMAGE) randomized clinical trial.Eur Heart J. 2021; 42: 684-696https://doi.org/10.1093/eurheartj/ehaa758
- Association of Active and Passive Components of LV Diastolic Filling With Exercise Intolerance in Heart Failure With Preserved Ejection Fraction: Mechanistic Insights From Spironolactone Response.JACC Cardiovasc Imaging. 2019; 12: 784-794https://doi.org/10.1016/j.jcmg.2017.10.007
- Spironolactone for heart failure with preserved ejection fraction.N Engl J Med. 2014; 370: 1383-1392https://doi.org/10.1056/NEJMoa1313731
- Interaction Between Spironolactone and Natriuretic Peptides in Patients With Heart Failure and Preserved Ejection Fraction: From the TOPCAT Trial.JACC Heart Fail. 2017; 5: 241-252https://doi.org/10.1016/j.jchf.2016.11.015
- Association between long-term prescription of aldosterone antagonist and the progression of heart failure with preserved ejection fraction in hypertensive patients.Int J Cardiol. 2016; 220: 56-60https://doi.org/10.1016/j.ijcard.2016.06.190
- A prospective STudy using invAsive haemodynamic measurements foLLowing catheter ablation for AF and early HFpEF : STALL AF‐HFpEF.Eur J Heart Fail. 2021; 23: 785-796https://doi.org/10.1002/ejhf.2122
- Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American society of echocardiography and the European association of cardiovascular imaging.Eur Heart J Cardiovasc Imaging. 2015; 16: 233-271https://doi.org/10.1093/ehjci/jev014
- Association between lung ultrasound B-lines and exercise-induced pulmonary hypertension in patients with connective tissue disease.Echocardiography. 2021; 38: 1297-1306https://doi.org/10.1111/echo.15141
- The H2FPEF and HFA-PEFF algorithms for predicting exercise intolerance and abnormal hemodynamics in heart failure with preserved ejection fraction.Sci Rep. 2022; 12: 13https://doi.org/10.1038/s41598-021-03974-6
- Haemodynamics, dyspnoea, and pulmonary reserve in heart failure with preserved ejection fraction.Eur Heart J. 2018; 39: 2810-2821https://doi.org/10.1093/eurheartj/ehy268
- Salutary Acute Effects of Exercise on Central Hemodynamics in Heart Failure With Preserved Ejection Fraction.J Card Fail. 2021; 27: 1313-1320https://doi.org/10.1016/j.cardfail.2021.04.014
- Heart Failure With Preserved Ejection Fraction and Diabetes: JACC State-of-the-Art Review.J Am Coll Cardiol. 2019; 73: 602-611https://doi.org/10.1016/j.jacc.2018.11.033
- Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial.Lancet (London, England). 2003; 362: 777-781https://doi.org/10.1016/S0140-6736(03)14285-7
- Efficacy and safety of spironolactone in the heart failure with mid-range ejection fraction and heart failure with preserved ejection fraction: A meta-analysis of randomized clinical trials.Medicine (Baltimore). 2019; 98e14967https://doi.org/10.1097/MD.0000000000014967
- Effect of Mineralocorticoid Receptor Antagonists on Cardiac Structure and Function in Patients With Diastolic Dysfunction and Heart Failure With Preserved Ejection Fraction: A Meta-Analysis and Systematic Review.J Am Heart Assoc. 2015; 4e002137https://doi.org/10.1161/JAHA.115.002137
- A randomized study of the beneficial effects of aldosterone antagonism on LV function, structure, and fibrosis markers in metabolic syndrome.JACC Cardiovasc Imaging. 2011; 4: 1239-1249https://doi.org/10.1016/j.jcmg.2011.08.014
Mottram PM, Haluska B, Leano R, Cowley D, Stowasser M, Marwick TH. Effect of aldosterone antagonism on myocardial dysfunction in hypertensive patients with diastolic heart failure. Circulation. 2004;110(5):558-565. doi:10.1161/01.CIR.0000138680.89536.A9
- Effect of Aldosterone Antagonism on Exercise Tolerance in Heart Failure With Preserved Ejection Fraction.J Am Coll Cardiol. 2016; 68: 1823-1834https://doi.org/10.1016/j.jacc.2016.07.763
- Results of the Randomized Aldosterone Antagonism in Heart Failure with Preserved Ejection Fraction trial (RAAM-PEF).J Card Fail. 2011; 17: 634-642https://doi.org/10.1016/j.cardfail.2011.04.007
- Effects of spironolactone treatment in elderly women with heart failure and preserved left ventricular ejection fraction.J Card Fail. 2014; 20: 560-568https://doi.org/10.1016/j.cardfail.2014.05.010
- The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: A phase 2 double-blind randomised controlled trial.Lancet. 2012; 380: 1387-1395https://doi.org/10.1016/S0140-6736(12)61227-6
- Influence of ejection fraction on outcomes and efficacy of spironolactone in patients with heart failure with preserved ejection fraction.Eur Heart J. 2016; 37: 455-462https://doi.org/10.1093/eurheartj/ehv464
- Heart failure with mid-range ejection fraction in CHARM: characteristics, outcomes and effect of candesartan across the entire ejection fraction spectrum.Eur J Heart Fail. 2018; 20: 1230-1239https://doi.org/10.1002/ejhf.1149
- Myocardial Strain for Identification of β-Blocker Responders in Heart Failure with Preserved Ejection Fraction.J Am Soc Echocardiogr. 2019; 32: 1462-1469.e8https://doi.org/10.1016/j.echo.2019.06.017
Article info
Publication history
Publication stage
In Press Journal Pre-ProofFootnotes
Sources of Funding
This research was supported by grants from the Takeda Science Foundation.
Disclosures
Dr. Obokata received speaker honoraria from Novartis, Otsuka pharmaceutical, Boehringer-Ingelheim, and Bayer. Dr. Ishii received speaker honoraria from AstraZeneca Inc., Bayer Pharmaceutical Co., Ltd., Boehringer Ingelheim Japan, Bristol-Myers Squibb Inc., Daiichi-Sankyo Pharma Inc., MSD K. K., Mitsubishi Tanabe Pharma Co., Ltd., Mochida Pharmaceutical Co., Ltd., Novartis Japan, and Pfizer Japan Inc.and received scholarship funds or donations from Boehringer Ingelheim Japan and Bristol-Myers Squibb Inc.
Identification
Copyright
User license
Creative Commons Attribution – NonCommercial – NoDerivs (CC BY-NC-ND 4.0) |
Permitted
For non-commercial purposes:
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article (private use only, not for distribution)
- Reuse portions or extracts from the article in other works
Not Permitted
- Sell or re-use for commercial purposes
- Distribute translations or adaptations of the article
Elsevier's open access license policy